ANALISIS PROFIL SISWA SMU TERHADAP PEMAHAMAN KONSEP JARAK TITIK KE BIDANG DITINJAU DARI PERSPEKTIF PERBEDAAN GENDER
DOI:
https://doi.org/10.20527/qamwt991Keywords:
profil, jarak, titik, bidang, genderAbstract
Penelitian ini bertujuan untuk mendeskripsikan profile secara alamiah siswa SMU terkait dengan pemahaman konsep jarak dari titik ke bidang. Metode penelitian berjenis kualitatif, dengan menggunakan metode triangulasi waktu dan sumber. Subyek penelitiannya adalah siswa SMU, 1 siswa laki-laki dan 1 siswi perempuan. Kode subyek penelitian siswa laki-laki (SL), dan subyek siswa perempuan (SP). Kajian analisis pemahaman konsep jarak titik ke bidang meliputi: (1) Aspek pengertian; (2) Aspek representasi; (3) Aspek contoh dan bukan contoh; (4) Aspek menghitung jarak. Hasil penelitian dari 4 aspek kajian diperoleh informasi yaitu siswa laki-laki cenderung lebih baik dari aspek reprensentasi, sedangkan untuk aspek pengertian, aspek contoh-bukan contoh, dan aspek menghitung, tidak ada perbedaan nyata antara siswa laki-laki dan perempuan.
This study aims to describe the natural profile of high school students related to understanding the concept of distance from a point to a plane. The research method is qualitative, using time and source triangulation methods. The research subjects were high school students, 1 male student and 1 female student. The research subjects code were male students (SL), and female student subjects (SP). The analysis study of understanding the concept of point-to-plane distance includes: (1) Aspects of understanding; (2) Aspect of representation; (3) Aspects of examples and non-examples; (4) The aspect of calculating distance. The results of the research from 4 aspects of the study obtained information that male students tended to be better in terms of representation, while for aspects of understanding, aspects of examples-not examples, and aspects of counting, there was no significant difference between male and female students.
Downloads
References
As’adi, M. (2010). Deteksi bakat dan minat anak sejak dini. Gerai Ilmu. Yogyakarta
Barmby, P., Harries, T., Higgins, S., & Suggate J., (2007). How Can we Assess Mathematical Understanding?. In Proceedings of The 31st Conference of The International Group for The Psychology of Mathematics Education, 2, 41-48.
Brooks, J. G. (1993). In Search of Understanding: The case for Constructivist Classroom. Alexandria, VA: Association for Supervision and Curriculum Development.
Budiarto. (2001). Profil Pencapaian Tahap Berfikir Siswa SMP di Kota Malang dalam Belajar Geometri Berdasarkan Tahap Berfikir Van Hiele. Malang: Universitas Negeri Malang.
Bunda, L. (2010). Mendidik Sesuai Dengan Minat dan Bakat Anak. Jakarta: PT. Tangga Pustaka.
Carr. (1999). Elementray school children’s strategy preference on mathematic education.
Fraenkel, J. R., & Wallen, N. E. (2009). How to Design and Evaluate Research in Education. San Fancisco: The McGrow Hill Companies.
Herscovics, N. (1996). The construction of conceptual schemes in mathematics. In theories of mathematics learning. New Jersey: Lawrence Elbaum Associates Publisher.
Hiebert, J. & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. Grouws, (Ed), Handbook of Research on Mathematics Teaching and Learning (pp. 65-97). New York: MacMillan. 1992
Krismanto, A. (2004). Dimensi Tiga Pembelajaran Jarak. Yogyakarta: Departemen Pendidikan Nasional.Direktorat Jendrl Pendidikan Dasar dan Menengah.Pusat Pengembangan dan Penataran Guru Matematika,
Leo, L. (2004). Euclidiean distance geometry and applications. in Handbook of discrete and computational geometry, J. Goodman and J. O’Rourke, eds., CRC Press.
Moleong, L.J. (2007). Metode penelitian kualitatif. Bandung: PT Remaja Rosdakarya.
Pegg, J. (2000). Students’ understanding of geometry: theoretical perspectives. University of New England.
Pirie, S., & Kieren, T. (1994). Growth in mathematical understanding: How can we characterize it and how can we represent it?. Educational studies in mathematics, 26, 165-190.
Skemp, R. (1979). Relational understanding and instrumental understanding. In mathematics teaching, 77, 20-26.
Traver, K.J, Dalton. (1987). Geometry.Editon 1. River Forest, Illinois: LaidlawBrothers Publisher.
UNDP. (2007). Gender mainstreaming in practice: A toolkit. 2007
Downloads
Published
Issue
Section
License
Copyright (c) 2024 SENPIKA

This work is licensed under a Creative Commons Attribution 4.0 International License.




